Ondrej Bohdal
I'm a senior machine learning researcher at Samsung
Research, where I focus on personalization of generative AI models. Before joining Samsung, I
was a postdoctoral researcher at the
University of Edinburgh, working on topics such as multimodal large language models, diffusion
models, fairness, uncertainty calibration and out-of-distribution generalization.
I did my PhD on Meta-Learning Algorithms and Applications at the
University of Edinburgh, advised by Timothy
Hospedales.
I was a research intern at Samsung AI
Center, Cambridge and Amazon Web Services, Berlin, and
also did part of my
studies at the Alan Turing Institute in London.
Email  / 
Google Scholar  / 
Twitter  / 
Github  / 
LinkedIn  / 
London, UK
Research Overview
/
Publications
/
Background
|
|
Publications
|
Efficient Compositional Multi-tasking for On-device Large Language Models
Ondrej Bohdal, Mete Ozay, Jijoong Moon, Kyeng-Hun Lee, Hyeonmok Ko, Umberto Michieli
EMNLP, 2025
paper
/
project page
/
code
|
HydraOpt: Navigating the Efficiency-Performance Trade-off of Adapter Merging
Taha Ceritli, Ondrej Bohdal, Mete Ozay, Jijoong Moon, Kyeng-Hun Lee, Hyeonmok Ko, Umberto Michieli
EMNLP, 2025
paper
|
LoRA.rar: Learning to Merge LoRAs via Hypernetworks for Subject-Style Conditioned Image
Generation
Donald Shenaj, Ondrej Bohdal, Mete Ozay, Pietro Zanuttigh, Umberto Michieli
ICCV, 2025
paper
/
project page
/
code
|
VL-ICL Bench: The Devil in the Details of Benchmarking Multimodal In-Context Learning
Yongshuo Zong*, Ondrej Bohdal*, Timothy Hospedales
* Joint first authors
ICLR, 2025
paper
/
project page
/
code
/
data
|
MemControl: Mitigating Memorization in Medical Diffusion Models via Automated Parameter
Selection
Raman Dutt, Ondrej Bohdal, Pedro Sanchez, Sotirios A. Tsaftaris, Timothy Hospedales
WACV, 2025
paper
|
On the Limitations of General Purpose Domain Generalisation Methods
Henry Gouk, Ondrej Bohdal, Da Li, Timothy Hospedales
Under review, 2024
paper
|
Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted
Ruchika Chavhan, Ondrej Bohdal, Yongshuo Zong, Da Li, Timothy Hospedales
ICML GenLaw workshop, 2024
paper
|
Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models
Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, Timothy Hospedales
ICML, 2024
paper
/
project page
/
code
/
data
|
Navigating Noise: A Study of How Noise Influences Generalisation and Calibration of Neural
Networks
Martin Ferianc*, Ondrej Bohdal*, Timothy Hospedales, Miguel Rodrigues
          
* Joint first authors
TMLR, 2024
paper
/
code
/
video
|
FairTune: Optimizing Parameter Efficient Fine Tuning for Fairness in Medical Image
Analysis
Raman Dutt, Ondrej Bohdal, Sotirios A. Tsaftaris, Timothy Hospedales
ICLR, 2024
paper
/
code
|
Feed-Forward Latent Domain Adaptation
Ondrej Bohdal, Da Li, Shell Xu Hu, Timothy Hospedales
WACV, 2024
paper
/
project page
/
video
/
slides
/
patent
|
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected
Calibration Error
Ondrej Bohdal, Yongxin Yang, Timothy Hospedales
TMLR, 2023
paper
/
code
|
Meta Omnium: A Benchmark for General-Purpose Learning-to-Learn
Ondrej Bohdal*, Yinbing Tian*, Yongshuo Zong, Ruchika Chavhan, Da Li, Henry Gouk, Li Guo, Timothy
Hospedales
* Joint first authors
CVPR, 2023
paper
/
project page
/
code
/
video
/
slides
/
poster
|
PASHA: Efficient HPO and NAS with Progressive Resource Allocation
Ondrej Bohdal, Lukas Balles, Martin Wistuba, Beyza Ermis, Cédric Archambeau, Giovanni Zappella
ICLR, 2023
HPO: hyperparameter optimization, NAS: neural architecture search
paper
/
code
/
tutorial
/
video
/
slides
/
poster
|
Label Calibration for Semantic Segmentation Under Domain Shift
Ondrej Bohdal, Da Li, Timothy Hospedales
ICLR Trustworthy ML workshop, 2023
paper
|
Fairness in AI and Its Long-Term Implications on Society
Ondrej Bohdal, Timothy Hospedales, Philip H.S. Torr, Fazl Barez
Stanford Existential Risks Conference, 2023
paper
|
Feed-Forward Source-Free Domain Adaptation via Class Prototypes
Ondrej Bohdal, Da Li, Timothy Hospedales
ECCV OOD-CV workshop, 2022
paper
|
EvoGrad: Efficient Gradient‑Based Meta‑Learning and Hyperparameter Optimization
Ondrej Bohdal, Yongxin Yang, Timothy Hospedales
NeurIPS, 2021
paper
/
blog
/
code
/
video
/
slides
/
poster
|
A Channel Coding Benchmark for Meta‑Learning
Rui Li, Ondrej Bohdal, Rajesh Mishra, Hyeji Kim, Da Li, Nicholas Lane, Timothy Hospedales
NeurIPS (datasets and benchmarks track), 2021
paper
/
code
/
blog
/
video
|
Flexible Dataset Distillation: Learn Labels Instead of Images
Ondrej Bohdal, Yongxin Yang, Timothy Hospedales
NeurIPS MetaLearn workshop, 2020
paper
/
code
/
video
|
Semantic Segmentation of 3D Point Clouds
Data study group at the Alan Turing Institute, 2020
report
|
|